We report an analysis of the discontinuous plastic flow of a multiprincipal-element alloy, ${\mathrm{Co}}_{17.5}{\mathrm{Cr}}_{12.5}{\mathrm{Fe}}_{55}{\mathrm{Ni}}_{10}{\mathrm{Mo}}_{5}$ (atomic percent, at. %), in the temperature range of 0.5--4.2 K showing serrated deformation curves. Using… Click to show full abstract
We report an analysis of the discontinuous plastic flow of a multiprincipal-element alloy, ${\mathrm{Co}}_{17.5}{\mathrm{Cr}}_{12.5}{\mathrm{Fe}}_{55}{\mathrm{Ni}}_{10}{\mathrm{Mo}}_{5}$ (atomic percent, at. %), in the temperature range of 0.5--4.2 K showing serrated deformation curves. Using the analytical techniques, we studied the statistics of the stress drops associated with the unstable plastic flow. The analysis showed that the complexity and heterogeneity of a discontinuous plastic flow were reduced when the temperature was lowered. This behavior was associated with the effects of dynamic recovery and adiabatic heating on the dislocation-density evolution.
               
Click one of the above tabs to view related content.