LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mode-Locked Topological Insulator Laser Utilizing Synthetic Dimensions

Photo from wikipedia

We propose a system that exploits the fundamental features of topological photonics and synthetic dimensions to force many semiconductor laser resonators to synchronize, mutually lock, and under suitable modulation emit… Click to show full abstract

We propose a system that exploits the fundamental features of topological photonics and synthetic dimensions to force many semiconductor laser resonators to synchronize, mutually lock, and under suitable modulation emit a train of transform-limited mode-locked pulses. These lasers exploit the Floquet topological edge states in a 1D array of ring resonators, which corresponds to a 2D topological system with one spatial dimension and one synthetic frequency dimension. We show that the lasing state of the multielement laser system possesses the distinct characteristics of spatial topological edge states while exhibiting topologically protected transport. The topological synthetic-space edge mode imposes a constant-phase difference between the multifrequency modes on the edges, and together with modulation of the individual elements forces the ensemble of resonators to mode lock and emit short pulses, robust to disorder in the multiresonator system. Our results offer a proof-of-concept mechanism to actively mode lock a laser diode array of many lasing elements, which is otherwise extremely difficult due to the presence of many spatial modes of the array. The topological synthetic-space concepts proposed here offer an avenue to overcome this major technological challenge and open new opportunities in laser physics.

Keywords: topological insulator; system; locked topological; synthetic dimensions; laser; mode locked

Journal Title: Physical Review X
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.