LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Emergent s -Wave Interactions between Identical Fermions in Quasi-One-Dimensional Geometries

Photo from wikipedia

Orbital degrees of freedom play an essential role in metals, semiconductors, and strongly confined electronic systems. Experiments with ultracold atoms have used highly anisotropic confinement to explore low-dimensional physics, but… Click to show full abstract

Orbital degrees of freedom play an essential role in metals, semiconductors, and strongly confined electronic systems. Experiments with ultracold atoms have used highly anisotropic confinement to explore low-dimensional physics, but typically eliminate orbital degrees of freedom by preparing motional ground states in strongly confined directions. Here we prepare multi-band systems of spin-polarized fermionic potassium ($^{40}$K) in the quasi-one-dimensional (q1D) regime and quantify the strength of atom-atom correlations using radio-frequency spectroscopy. The activation of orbital degrees of freedom leads to a new phenomenon: a low-energy scattering channel that has even particle-exchange parity along the q1D axis, as if the underlying interactions were s-wave. This emergent exchange symmetry is enabled by orbital singlet wave functions in the strongly confined directions, which also confer high-momentum components to low-energy q1D collisions. We measure both the q1D odd-wave and even-wave"contact"parameters for the first time, and compare them to theoretical predictions of one-dimensional many-body models. The strength and spatial symmetry of interactions are tuned by a p-wave Feshbach resonance and by transverse confinement strength. Near resonance, the even-wave contact approaches its theoretical unitary value, whereas the maximum observed odd-wave contact remains several orders of magnitude below its unitary limit. Low-energy scattering channels of multi-orbital systems, such as those found here, may provide new routes for the exploration of universal many-body phenomena.

Keywords: low energy; orbital degrees; degrees freedom; quasi one; strongly confined; one dimensional

Journal Title: Physical Review X
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.