LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controllable Photonic Time-Bin Qubits from a Quantum Dot

Photo from academic.microsoft.com

Photonic time bin qubits are well suited to transmission via optical fibres and waveguide circuits. The states take the form $\frac{1}{\sqrt{2}}(\alpha \ket{0} + e^{i\phi}\beta \ket{1})$, with $\ket{0}$ and $\ket{1}$ referring… Click to show full abstract

Photonic time bin qubits are well suited to transmission via optical fibres and waveguide circuits. The states take the form $\frac{1}{\sqrt{2}}(\alpha \ket{0} + e^{i\phi}\beta \ket{1})$, with $\ket{0}$ and $\ket{1}$ referring to the early and late time bin respectively. By controlling the phase of a laser driving a spin-flip Raman transition in a single-hole-charged InAs quantum dot we demonstrate complete control over the phase, $\phi$. We show that this photon generation process can be performed deterministically, with only a moderate loss in coherence. Finally, we encode different qubits in different energies of the Raman scattered light, demonstrating wavelength division multiplexing at the single photon level.

Keywords: time; quantum dot; time bin; bin qubits; photonic time

Journal Title: Physical Review X
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.