LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coherence Properties of Molecular Single Photons for Quantum Networks

Photo by briangarrityphoto from unsplash

Quantum mechanics implies that a single photon can be in the superposition of two distant spatial modes and enable nonlocal interferences. The most vivid example is the two-photon coalescence on… Click to show full abstract

Quantum mechanics implies that a single photon can be in the superposition of two distant spatial modes and enable nonlocal interferences. The most vivid example is the two-photon coalescence on a 50∶50 beam splitter, known as Hong-Ou-Mandel interference. In the past decade, this experiment has been used to characterize the suitability of different single-photon sources for linear optical quantum gates. This characterization alone cannot guarantee the suitability of the photons in a scalable quantum network. As for a deeper insight, we perform a number of nonclassical interference measurements of single photons emitted by a single organic molecule that are optimized by an atomic Faraday filter. Our measurements reveal near unity visibility of the quantum interference, and a one-port correlation measurement proves the ideal Fourier limited nature of our single-photon source. A delayed choice quantum eraser allows us to observe a constructive interference between the photons, and a Hong-Ou-Mandel peak is formed additionally to the commonly observed dip. These experiments comprehensively characterize the involved photons for their use in a future quantum Internet, and they attest to the fully efficient interaction of the molecular photons with a next subsequent quantum node. They can be adapted to other emitters and will allow us to gain insights to their applicability for quantum information processing. We introduce a quality number that describes the photon’s properties for their use in a quantum network; this states that effectively 97% of the utilized molecular photons can be used in a scalable quantum optical system and interact with other quantum nodes. The experiments are based on a hybridization of solid state quantum optics, atomic systems, and all-optical quantum information processing.

Keywords: quantum; coherence properties; interference; single photon; single photons

Journal Title: Physical Review X
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.