LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum Dynamics of a Few-Photon Parametric Oscillator

Photo from wikipedia

Modulating the frequency of a harmonic oscillator at nearly twice its natural frequency leads to amplification and self-oscillation. Above the oscillation threshold, the field settles into a coherent oscillating state… Click to show full abstract

Modulating the frequency of a harmonic oscillator at nearly twice its natural frequency leads to amplification and self-oscillation. Above the oscillation threshold, the field settles into a coherent oscillating state with a well-defined phase of either $0$ or $\pi$. We demonstrate a quantum parametric oscillator operating at microwave frequencies and drive it into oscillating states containing only a few photons. The small number of photons present in the system and the coherent nature of the nonlinearity prevents the environment from learning the randomly chosen phase of the oscillator. This allows the system to oscillate briefly in a quantum superposition of both phases at once - effectively generating a nonclassical Schrodinger's cat state. We characterize the dynamics and states of the system by analyzing the output field emitted by the oscillator and implementing quantum state tomography suited for nonlinear resonators. By demonstrating a quantum parametric oscillator and the requisite techniques for characterizing its quantum state, we set the groundwork for new schemes of quantum and classical information processing and extend the reach of these ubiquitous devices deep into the quantum regime.

Keywords: oscillator; parametric oscillator; state; quantum dynamics; quantum; dynamics photon

Journal Title: Physical Review X
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.