LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Castor LPCAT and PDAT1A Act in Concert to Promote Transacylation of Hydroxy-Fatty Acid onto Triacylglycerol1[OPEN]

Photo by rtearth from unsplash

Substrate preferences of castor acyltransferase enzymes promote the transacylation of hydroxy-fatty acids onto triacylglycerol. Oilseeds produce abundant triacylglycerol (TAG) during seed maturation to fuel the establishment of photoautotrophism in the… Click to show full abstract

Substrate preferences of castor acyltransferase enzymes promote the transacylation of hydroxy-fatty acids onto triacylglycerol. Oilseeds produce abundant triacylglycerol (TAG) during seed maturation to fuel the establishment of photoautotrophism in the subsequent generation. Commonly, TAG contains 18-carbon polyunsaturated fatty acids (FA), but plants also produce oils with unique chemical properties highly desirable for industrial processes. Unfortunately, plants that produce such oils are poorly suited to agronomic exploitation, leading to a desire to reconstitute novel oil biosynthesis in crop plants. Here, we studied the production and incorporation of hydroxy-fatty acids (HFA) onto TAG in Arabidopsis (Arabidopsis thaliana) plants expressing the castor (Ricinus communis) FAH12 hydroxylase. One factor limiting HFA accumulation in these plants is the inefficient removal of HFA from the site of synthesis on phosphatidylcholine (PC). In Arabidopsis, lysophosphatidic acid acyltransferase (LPCAT) cycles FA to and from PC for modification. We reasoned that the castor LPCAT (RcLPCAT) would preferentially remove HFA from PC, resulting in greater incorporation onto TAG. However, expressing RcLPCAT in Arabidopsis expressing FAH12 alone (line CL37) or together with castor acyl:coenzyme A:diacylglycerol acyltransferase2 reduced HFA and total oil yield. Detailed analysis indicated that RcLPCAT reduced the removal of HFA from PC, possibly by competing with the endogenous LPCAT isozymes. Significantly, coexpressing RcLPCAT with castor phospholipid:diacylglycerol acyltransferase increased novel FA and total oil contents by transferring HFA from PC to diacylglycerol. Our results demonstrate that a detailed understanding is required to engineer modified FA production in oilseeds and suggest that phospholipase A2 enzymes rather than LPCAT mediate the highly efficient removal of HFA from PC in castor seeds.

Keywords: castor; hydroxy fatty; hfa; lpcat; promote transacylation

Journal Title: Plant Physiology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.