LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental feasibility of dual-energy computed tomography based on the Thomson scattering X-ray source.

Photo from wikipedia

Unlike large-scale and expensive synchrotron radiation facilities, the Thomson scattering X-ray source can provide quasi-monochromatic, energy-tunable and high-brightness X-ray pulses with a small footprint and moderate cost, making it an… Click to show full abstract

Unlike large-scale and expensive synchrotron radiation facilities, the Thomson scattering X-ray source can provide quasi-monochromatic, energy-tunable and high-brightness X-ray pulses with a small footprint and moderate cost, making it an excellent candidate for dual-energy and multi-energy imaging at laboratories and hospitals. Here, the first feasibility study on dual-energy computed tomography (CT) based on this type of light source is reported, and the effective atomic number and electron-density distribution of a standard phantom consisting of polytetrafluoroethylene, water and aluminium is derived. The experiment was carried out at the Tsinghua Thomson scattering X-ray source with peak energies of 29 keV and 68 keV. Both the reconstructed effective atomic numbers and the retrieved electron densities of the three materials were compared with their theoretical values. It was found that these values were in agreement by 0.68% and 2.60% on average for effective atomic number and electron density, respectively. These results have verified the feasibility of dual-energy CT based on the Thomson scattering X-ray source and will further expand the scope of X-ray imaging using this type of light source.

Keywords: thomson scattering; energy; source; ray source; scattering ray; dual energy

Journal Title: Journal of synchrotron radiation
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.