W/B4C multilayers (MLs) consisting of ten layer pairs with varying boron carbide layer thicknesses have been investigated. The ML structures were characterized using grazing-incidence hard X-ray reflectivity (GIXR), resonant soft… Click to show full abstract
W/B4C multilayers (MLs) consisting of ten layer pairs with varying boron carbide layer thicknesses have been investigated. The ML structures were characterized using grazing-incidence hard X-ray reflectivity (GIXR), resonant soft X-ray reflectivity (RSXR), hard X-ray photoelectron spectroscopy (HAXPES) and X-ray absorption near-edge spectroscopy (XANES). Depth-resolved spectroscopic information on the boron carbide layer in W/B4C MLs was extracted with sub-nanometre resolution using reflectivity performed in the vicinity of the B K-edge. Interestingly, these results show that the composition of boron carbide films is strongly dependent on layer thicknesses. HAXPES measurements suggest that most of the boron is in the chemical state of B4C in the multilayer structures. XANES measurements suggest an increase in boron content and C-B-C bonding with increase in boron carbide layer thickness.
               
Click one of the above tabs to view related content.