LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characteristic features of polytypism in compounds with the La18W10O57-type structure.

Photo by stayandroam from unsplash

Crystals with the La18W10O57-type structure (6H and 5H polytypes) were obtained by a self-flux method from high-temperature solutions. Some of the crystal samples were studied by single-crystal X-ray structure analysis.… Click to show full abstract

Crystals with the La18W10O57-type structure (6H and 5H polytypes) were obtained by a self-flux method from high-temperature solutions. Some of the crystal samples were studied by single-crystal X-ray structure analysis. The diffraction patterns indicated that two phases co-exist in each sample. The hexagonal lattices have a common period of a ≈ 9.0 Å and are non-equal in length but have equally oriented superstructure periods 6c (phase I) and 5c (phase II), c ≈ 5.4 Å. The structures of phases I and II were solved in the symmetry groups P-62c and P321, respectively, based on the X-ray data for crystals I and II, with predominant content of the first and second phase. The motif of isolated WO6 prisms with W atoms on the cell edges is common to both phases. WO6 octahedra, both isolated and joined by faces, are distributed along the c axis within the unit cells. Phase I contains extra layers of isolated WO6 octahedra compared to phase II. Tungsten sites in joined octahedra are disordered and partially occupied. Disordering is more expressed in phase II, which in return contains rather more W and O per atom of La. The refined chemical compositions are La18W10O57 for I and La15W8.5O48 for II.

Keywords: type structure; features polytypism; la18w10o57 type; structure; characteristic features; phase

Journal Title: Acta crystallographica. Section C, Structural chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.