Thermal-induced transformation of glutamic acid to pyroglutamic acid is well known. However, confusion remains over the exact temperature at which this happens. Moreover, no diffraction data are available to support… Click to show full abstract
Thermal-induced transformation of glutamic acid to pyroglutamic acid is well known. However, confusion remains over the exact temperature at which this happens. Moreover, no diffraction data are available to support the transition. In this article, we make a systematic investigation involving thermal analysis, hot-stage microscopy and single-crystal X-ray diffraction to study a one-pot thermal transition of glutamic acid to pyroglutamic acid and subsequent self-cocrystallization between the product (hydrated pyroglutamic acid) and the unreacted precursor (glutamic acid). The melt upon cooling gave a robust cocrystal, namely, glutamic acid-pyroglutamic acid-water (1/1/1), C5H7NO3·C5H9NO4·H2O, whose structure has been elucidated from single-crystal X-ray diffraction data collected at room temperature. A three-dimensional network of strong hydrogen bonds has been found. A Hirshfeld surface analysis was carried out to make a quantitative estimation of the intermolecular interactions. In order to gain insight into the strength and stability of the cocrystal, the transferability principle was utilized to make a topological analysis and to study the electron-density-derived properties. The transferred model has been found to be superior to the classical independent atom model (IAM). The experimental results have been compared with results from a multipolar refinement carried out using theoretical structure factors generated from density functional theory (DFT) calculations. Very strong classical hydrogen bonds drive the cocrystallization and lend stability to the resulting cocrystal. Important conclusions have been drawn about this transition.
               
Click one of the above tabs to view related content.