An asymmetric bis(silyl) niobocene hydride complex, namely, bis(η5-cyclopentadienyl)(fluorodimethylsilyl)hydrido(iododimethylsilyl)niobium, [Nb(C5H5)2(C2H6FSi)(C2H6ISi)H] or Cp2NbH(SiIMe2)(SiFMe2), has been studied to determine the effect of the silyl ligand on the position of the hydride attached to… Click to show full abstract
An asymmetric bis(silyl) niobocene hydride complex, namely, bis(η5-cyclopentadienyl)(fluorodimethylsilyl)hydrido(iododimethylsilyl)niobium, [Nb(C5H5)2(C2H6FSi)(C2H6ISi)H] or Cp2NbH(SiIMe2)(SiFMe2), has been studied to determine the effect of the silyl ligand on the position of the hydride attached to the Nb atom. It has been shown that when a Group 17 atom is substituted onto one of the silyl ligands, there is a greater interaction between the hydride and this ligand, as demonstrated by a shorter Si...H distance. In the present work, we have investigated the effect when the silyl ligands are substituted by different Group 17 atoms. We present here the structure and DFT calculations of Cp2NbH(SiIMe2)(SiFMe2), showing that the position of the hydride is located between the two silyl ligands. The results from our investigation show that the hydride is closer to the silyl ligand that is substituted by fluorine.
               
Click one of the above tabs to view related content.