LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tb2-xNdxZn17-yNiy (x = 0.5, y = 4.83): a new intermetallic with a maximum disordered structure and its hydrogen storage properties.

The ternary Tb2-xNdxZn17-yNiy (x = 0.5, y = 4.83) disordered phase belongs to the structural family based on the rhombohedral Th2Zn17 structure type. The structure is maximally disordered since all the sites… Click to show full abstract

The ternary Tb2-xNdxZn17-yNiy (x = 0.5, y = 4.83) disordered phase belongs to the structural family based on the rhombohedral Th2Zn17 structure type. The structure is maximally disordered since all the sites are occupied by statistical mixtures of atoms. The Tb/Nd mixture of atoms occupies the 6c site (site symmetry 3m). The statistical mixtures Ni/Zn consisting of more Ni atoms are located in the 6c and 9d (symmetry .2/m) sites. In the following 18f (site symmetry .2) and 18h (site symmetry .m) sites are located Zn/Ni statistical mixtures which consist of more Zn atoms. Zn/Ni atoms form three-dimensional networks with hexagonal channels that fill statistical mixtures of Tb/Nd and Ni/Zn. The Tb2-xNdxZn17-yNiy compound belongs to the family of intermetallic phases capable of absorbing hydrogen. In the structure, there are three types of voids, namely, 9e (site symmetry .2/m), 3b (site symmetry \overline{3}m) and 36i (site symmetry 1), in which hydrogen can be inserted, and the maximum total absorption capacity can reach 1.21 wt% H2. Electrochemical hydrogenation shows that the phase absorbs 1.03% of H2, which indicates partial filling of the voids with H atoms.

Keywords: tb2 xndxzn17; structure; xndxzn17 yniy; site symmetry; symmetry; site

Journal Title: Acta crystallographica. Section C, Structural chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.