LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrodeposition of Ni-W and Ni-W-P films using a pulse current technique and their application for hydrogen evolution in an acidic solution

Photo from wikipedia

The improvement of the hydrogen evolution reaction (HER) performance requires more efficient and inexpensive electrocatalysts. The purpose of this study is to prepare Ni-W and Ni-W-P thin films using the… Click to show full abstract

The improvement of the hydrogen evolution reaction (HER) performance requires more efficient and inexpensive electrocatalysts. The purpose of this study is to prepare Ni-W and Ni-W-P thin films using the electrodeposition technique using a pulse current and investigate their behaviors toward HER in an acidic solution.,The aim is to prepare Ni-W and Ni-W-P films by the electrodeposition technique using a pulse current and estimate their performance for the HER. The surface morphologies and chemical compositions of the deposited films were assessed using scanning electron microscopy, energy-dispersive X-ray analysis and X-ray diffraction. Linear sweep voltammetry, chronoamperometry, Tafel plots and electrochemical impedance spectroscopy were used to evaluate the prepared electrodes toward the hydrogen evolution process.,The main conclusion is that the surface morphology of Ni–W deposited film is a crystalline structure, while that of Ni-W-P deposit is an amorphous structure. HER activity on Ni-W electrodes increases with decreasing the Wt.% of W to 7.83 Wt.% in the prepared electrodes. In addition, the presence of P enhances HER activity, which increases with increasing the Wt.% of P in the prepared Ni-W-P electrodes. Both Ni-W (7.83 Wt.% W) and Ni-W-P (20.34 Wt.% P), which have been prepared at 8 A dm−2 display the best performance toward HER compared to the other prepared electrodes. They exhibit high catalytic activities toward HER, which is evidenced by high hydrogen evolution current density values of 9.52 and 33.98 mA cm−2, low onset potentials of −0.73 and −0.63 V, low Tafel slopes of −125 mV/dec, high exchange current densities of 0.058 and 0.20 mA cm−2, low charge transfer resistances (Rct) of 226.28 and 75.8 ohm·cm2 for Ni-W (7.83  Wt.% W) and Ni-W-P (20.34  Wt.% P), respectively; moreover, they exhibited considerable stabilities too.,The results presented in this work are an insight into understanding the performance of the prepared Cu electrodes coated by Ni-W and Ni-W-P films toward HER. In this work, a consistent assessment of the results achieved on laboratory scale has been conducted.

Keywords: using pulse; hydrogen; hydrogen evolution; prepared electrodes; pulse current

Journal Title: Anti-corrosion Methods and Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.