LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical corrosion performances of laser thermal sprayed amorphous Al–Ti–Ni coatings in marine environment

Photo from wikipedia

The purpose of this paper is to investigate the effects of laser power on the electrochemical corrosion performance in 3.5% NaCl, 0.1 M H2SO4 and 0.1 M NaOH solutions, which provided an… Click to show full abstract

The purpose of this paper is to investigate the effects of laser power on the electrochemical corrosion performance in 3.5% NaCl, 0.1 M H2SO4 and 0.1 M NaOH solutions, which provided an experimental basis for the application of Al–Ti–Ni amorphous coating in marine environment.,Amorphous Al–Ti–Ni coatings were fabricated on S355 structural steel by laser thermal spraying (LTS) at different laser powers. The surface and cross-section morphologies, chemical element distribution, phases and crystallization behaviors of obtained coatings were analyzed using a scanning electron microscope, energy-dispersive X-ray spectroscope, X-ray diffraction and differential scanning calorimetry, respectively. The effects of laser power on the electrochemical corrosion performances of Al–Ti–Ni coatings in 3.5% NaCl, 0.1 M H2SO4 and 0.1 M NaOH solutions were investigated using an electrochemical workstation.,The crystallization temperature of Al–Ti–Ni coatings fabricated at the laser power of 1,300 and 1,700 W is ∼520°C, whereas that fabricated at the laser power of 1,500 W is ∼310°C. The coatings display excellent corrosion resistance in 3.5% NaCl and 0.1 M NaOH solutions, while a faster dissolution rate in 0.1 M H2SO4 solution. The coatings fabricated at the laser power of 1,300 and 1,700 W present the better electrochemical corrosion resistance in 3.5% NaCl and 0.1 M NaOH solutions, whereas that fabricated at the laser power of 1,500 W exhibits the better electrochemical corrosion resistance in 0.1 M H2SO4 solution.,In this work, Al-wire-cored Ti–Ni powder was first on S355 steel with the laser power of 1,300, 1,500 and 1,700 W, and the effects of laser power on the electrochemical corrosion performance in 3.5% NaCl, 0.1 M H2SO4 and 0.1 M NaOH solutions were investigated using an electrochemical workstation.

Keywords: electrochemical corrosion; marine environment; corrosion; laser power; naoh solutions

Journal Title: Anti-corrosion Methods and Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.