LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theoretical model proposal on direct calculation of wetted area and maximum lift-to-drag ratio

Photo from wikipedia

Purpose As measuring flight performance by experimental methods requires a lot of effort and cost, theoretical models can bring new perspectives to aircraft design. This paper aims to propose a… Click to show full abstract

Purpose As measuring flight performance by experimental methods requires a lot of effort and cost, theoretical models can bring new perspectives to aircraft design. This paper aims to propose a model on the direct calculation of wetted area and L/Dmax. Design/methodology/approach Model is based on idea that the wetted area is proportional to aircraft gross weight to the power of 2/3 (Wg2/3). Aerodynamic underpinning of this method is based on the square–cube law and the claim that parasitic drag is related to the Swet/Swing. The equation proposed by Raymer was used to find the L/Dmax estimate based on the calculated wetted area. The accuracy of the theoretical approach was measured by comparing the L/Dmax values found in the reference literature and the L/Dmax values predicted by the theoretical approach. Findings Proposed theoretical L/Dmax estimate matches with the actual L/Dmax data in different types of aircraft. Among the conventional tube-wing design, only the sailplanes have a very low Swet/Swing. The Swet/Swing of flying wings, blended wing bodies (BWBs) and large delta wings are lower than conventional tube-wing design. Lower relative wetted area (Swet/Swing) is the key design criterion in high L/Dmax targeted designs. Originality/value The proposed model could be used in wing sizing according to the targeted L/Dmax value in aircraft design. The approach can be used to estimate the effect of varying gross weight on L/Dmax. In addition, the model contributes to the L/Dmax estimation of unusual designs, such as variable-sweep wing, large delta wings, flying wings and BWBs. This study is valuable in that it reveals that L/Dmax value can be predicted only with aspect ratio, gross weight (Wg) and wing area (Swing) data.

Keywords: area; dmax; model; direct calculation; design; wetted area

Journal Title: Aircraft Engineering and Aerospace Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.