LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel coupled model for power loss prediction in a record-breaking electric aircraft motor

Photo from wikipedia

Purpose The purpose of this paper is to devise an analytical approach to calculate conductor winding losses, considering multiple contributing aspects simultaneously. These include the geometric configuration of coil windings,… Click to show full abstract

Purpose The purpose of this paper is to devise an analytical approach to calculate conductor winding losses, considering multiple contributing aspects simultaneously. These include the geometric configuration of coil windings, frequency of the electric current and the dependency on the coil temperature, derived studying a coupled fluid–solid model considering the cooling system characteristics. The obtained results allow identifying power loss trends according to such system variables as coolant inlet temperature or overall flow rate of the motor. Design/methodology/approach An easy-to-use coupled analytical approach is applied, which is suitable for rapid estimations of the impact of parameter variation on the resulting conductor winding power losses that facilitates decision-making in the design process of electric aircraft engines. Findings In the considered cooling parameters, the overall conductor winding power losses vary approximately between 6 kW and 7.2 kW. More than 95 per cent of this loss is because of direct current losses. These losses cause the variation in maximal coil temperature ranging between 115°C and 170°C. Practical implications The SP260D motor is set and was currently tested in Extra 330. It recently broke two world records. Social implications One of the current trends in aircraft engineering is electric aircraft. Advantages of electric aircraft include improved manoeuvrability because of greater torque from electric motors, increased safety because of decreased chance of mechanical failure, less risk of explosion or fire in the event of a collision and less noise. There will be environmental and cost benefits associated with the elimination of dependency on fossil fuels and resultant emissions. Originality/value The use of a novel fluid–solid interaction model for predicting conductor winding power loss of the SP260D electric aircraft motor has not been done earlier. A novel alternative derivation of the widely applied Dowell’s formula (Dowell, 1966) is presented for the estimation of proximity losses in square winding conductors.

Keywords: aircraft; power loss; electric aircraft; motor

Journal Title: Aircraft Engineering and Aerospace Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.