LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Porosity-dependent impact study of a plate with Winkler-Pasternak elastic foundations reinforced with agglomerated CNTs

Photo from wikipedia

Purpose The purpose of this article is to investigate the porosity-dependent impact study of a plate with Winkler–Pasternak elastic foundations reinforced with agglomerated carbon nanotubes (CNTs). Design/methodology/approach Based on the… Click to show full abstract

Purpose The purpose of this article is to investigate the porosity-dependent impact study of a plate with Winkler–Pasternak elastic foundations reinforced with agglomerated carbon nanotubes (CNTs). Design/methodology/approach Based on the first-order shear deformation plate theory, the strain energy related to elastic foundations is added to system strain energy. Using separation of variables and Lagrangian generalized equations, the nonlinear and time-dependent motion equations are extracted. Findings Verification examples are fulfilled to prove the precision and effectiveness of the presented model. The impact outputs illustrate the effects of various distribution of CNTs porosity functions along the plate thickness direction, Winkler–Pasternak elastic foundations and different boundary conditions on the Hertz contact law, the plate center displacement, impactor displacement and impactor velocity. Originality/value This paper investigates the effect of Winkler–Pasternak elastic foundations on the functionally graded porous plate reinforced with agglomerated CNTs under impact loading.

Keywords: pasternak elastic; winkler pasternak; impact; elastic foundations

Journal Title: Aircraft Engineering and Aerospace Technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.