LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles.
Sign Up to like articles & get recommendations!
Some remarks on invariant lightlike submanifolds of indefinite Sasakian manifold
PurposeThe author considers an invariant lightlike submanifold M, whose transversal bundle tr(TM) is flat, in an indefinite Sasakian manifold M¯(c) of constant φ¯-sectional curvature c. Under some geometric conditions, the… Click to show full abstract
PurposeThe author considers an invariant lightlike submanifold M, whose transversal bundle tr(TM) is flat, in an indefinite Sasakian manifold M¯(c) of constant φ¯-sectional curvature c. Under some geometric conditions, the author demonstrates that c=1, that is, M¯ is a space of constant curvature 1. Moreover, M and any leaf M′ of its screen distribution S(TM) are, also, spaces of constant curvature 1.Design/methodology/approachThe author has employed the techniques developed by K. L. Duggal and A. Bejancu of reference number 7.FindingsThe author has discovered that any totally umbilic invariant ligtlike submanifold, whose transversal bundle is flat, in an indefinite Sasakian space form is, in fact, a space of constant curvature 1 (see Theorem 4.4).Originality/valueTo the best of the author’s findings, at the time of submission of this paper, the results reported are new and interesting as far as lightlike geometry is concerned.
Share on Social Media:
  
        
        
        
Sign Up to like & get recommendations! 0
Related content
More Information
            
News
            
Social Media
            
Video
            
Recommended
               
Click one of the above tabs to view related content.