LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interaction profile of a mixed-culture fermentation of Issatchenkia orientalis and Saccharomyces cerevisiae by transcriptome sequencing

Photo from wikipedia

PurposeMixed fermentation with Saccharomyces cerevisiae and non-Saccharomyces yeasts has become an oenlogical tool to improve wines’ organoleptic properties. However, the maximum utilization of this method is dependent upon understanding the influence… Click to show full abstract

PurposeMixed fermentation with Saccharomyces cerevisiae and non-Saccharomyces yeasts has become an oenlogical tool to improve wines’ organoleptic properties. However, the maximum utilization of this method is dependent upon understanding the influence of mixed cultures on the physiology of S.cerevisiae and non-Saccharomyces yeasts.Design/methodology/approachIn this study, the supernatants from 48 h mixed-culture fermentation were added to the pure cultures of Issatchenkia orientalis and Saccharomyces, respectively. And the authors used RNA sequencing to determine the transcriptome change of I.orientalis and S.cerevisiae in a mixed culture.FindingsThe results showed that multiple genes associated with cell growth and death were differentially expressed. Genes related to biosynthesis of amino acids were enriched among those upregulated in the mixed-fermentation supernatant. Meanwhile, the differential expression level of genes encoding enzymes essential for formation of aroma compounds was found in the single and in the mixed fermentation. The high expression level of molecular chaperones Hsp70, Hsp90 and Hsp110 suggests that metabolites of mixed-culture fermentation may lead to aggregation of misfolded proteins. Moreover, upregulation of ethanol dehydrogenase I ADH1 in the mixed-culture fermentations was highlighted.Originality/valueThis is the first time that RNA-seq was used to analyze changes in the transcriptome of mixed cultures. According to the results the authors’ manuscript provided, an integrated view into the adaptive responses of S.cerevisiae and non-Saccharomyces yeasts to the mixed-culture fermentation is benefit for the potential application of S.cerevisiae and non-Saccharomyces yeasts in fruit wine brewing.

Keywords: saccharomyces cerevisiae; fermentation; cerevisiae non; culture fermentation; mixed culture

Journal Title: British Food Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.