LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A 10-bit 200 MS/s pipelined ADC with parallel sampling and switched op-amp sharing technique

Photo from wikipedia

Purpose In parallel sampling method, the size of the sampling capacitor is reduced to improve the bandwidth of the ADC. Design/methodology/approach Various low-power techniques for 10-bit 200MS/s pipelined analog-to-digital converter… Click to show full abstract

Purpose In parallel sampling method, the size of the sampling capacitor is reduced to improve the bandwidth of the ADC. Design/methodology/approach Various low-power techniques for 10-bit 200MS/s pipelined analog-to-digital converter (ADC) are presented. This work comprises two techniques including parallel sampling and switched op-amp sharing technique. Findings This paper aims to study the effect of parallel sampling and switched op-amp sharing techniques on power consumption in pipelined ADC. In switched op-amp sharing technique, the numbers of op-amps used in the stages are reduced. Because of the reduction in the size of capacitors in parallel sampling technique and op-amps in the switched op-amp sharing technique, the power consumption of the proposed pipelined ADC is reduced to a greater extent. Originality/value Simulated the 10-bit 200MS/s pipelined ADC with complementary metal oxide semiconductor process and the simulation results shows a maximum differential non-linearity of +0.31/−0.31 LSB and the maximum integral non-linearity (of +0.74/−0.74 LSB with 62.9 dB SFDR, 55.90 dB SNDR and ENOB of 8.99 bits, respectively, for 18mW power consumption with the supply voltage of 1.8 V.

Keywords: switched amp; sampling switched; amp sharing; pipelined adc; parallel sampling; sharing technique

Journal Title: Circuit World
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.