LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A wavelet method for solving Caputo–Hadamard fractional differential equation

Photo by rhsupplies from unsplash

PurposeThe purpose of the present work is to propose a wavelet method for the numerical solutions of Caputo–Hadamard fractional differential equations on any arbitrary interval.Design/methodology/approachThe author has modified the CAS… Click to show full abstract

PurposeThe purpose of the present work is to propose a wavelet method for the numerical solutions of Caputo–Hadamard fractional differential equations on any arbitrary interval.Design/methodology/approachThe author has modified the CAS wavelets (mCAS) and utilized it for the solution of Caputo–Hadamard fractional linear/nonlinear initial and boundary value problems. The author has derived and constructed the new operational matrices for the mCAS wavelets. Furthermore, The author has also proposed a method which is the combination of mCAS wavelets and quasilinearization technique for the solution of nonlinear Caputo–Hadamard fractional differential equations.FindingsThe author has proved the orthonormality of the mCAS wavelets. The author has constructed the mCAS wavelets matrix, mCAS wavelets operational matrix of Hadamard fractional integration of arbitrary order and mCAS wavelets operational matrix of Hadamard fractional integration for Caputo–Hadamard fractional boundary value problems. These operational matrices are used to make the calculations fast. Furthermore, the author works out on the error analysis for the method. The author presented the procedure of implementation for both Caputo–Hadamard fractional initial and boundary value problems. Numerical simulation is provided to illustrate the reliability and accuracy of the method.Originality/valueMany scientist, physician and engineers can take the benefit of the presented method for the simulation of their linear/nonlinear Caputo–Hadamard fractional differential models. To the best of the author’s knowledge, the present work has never been proposed and implemented for linear/nonlinear Caputo–Hadamard fractional differential equations.

Keywords: hadamard fractional; method; fractional differential; author; caputo hadamard; mcas wavelets

Journal Title: Engineering Computations
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.