LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Uncertainty quantification/propagation in nonlinear models: Robust reduction – generalized polynomial chaos

Photo from wikipedia

Purpose The purpose of this paper is to develop robust metamodels, which allow propagating parametric uncertainties, in the presence of localized nonlinearities, with reduced cost and without significant loss of… Click to show full abstract

Purpose The purpose of this paper is to develop robust metamodels, which allow propagating parametric uncertainties, in the presence of localized nonlinearities, with reduced cost and without significant loss of accuracy. Design/methodology/approach The proposed metamodels combine the generalized polynomial chaos expansion (gPCE) for the uncertainty propagation and reduced order models (ROMs). Based on the computation of deterministic responses, the gPCE requires prohibitive computational time for large-size finite element models, large number of uncertain parameters and presence of nonlinearities. To overcome this issue, a first metamodel is created by combining the gPCE and a ROM based on the enrichment of the truncated Ritz basis using static residuals taking into account the stochastic and nonlinear effects. The extension to the Craig–Bampton approach leads to a second metamodel. Findings Implementing the metamodels to approximate the time responses of a frame and a coupled micro-beams structure containing localized nonlinearities and stochastic parameters permits to significantly reduce computation cost with acceptable loss of accuracy, with respect to the reference Latin Hypercube Sampling method. Originality/value The proposed combination of the gPCE and the ROMs leads to a computationally efficient and accurate tool for robust design in the presence of parametric uncertainties and localized nonlinearities.

Keywords: propagation; localized nonlinearities; uncertainty; generalized polynomial; polynomial chaos

Journal Title: Engineering Computations
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.