LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of postural-assist exoskeleton for manual material handling

Photo from wikipedia

PurposeWork-related musculoskeletal disorders constitute a severe problem in the construction industry. Workers' lower backs are often affected by heavy or repetitive lifting and prolonged awkward postures. Exoskeletal interventions are effective… Click to show full abstract

PurposeWork-related musculoskeletal disorders constitute a severe problem in the construction industry. Workers' lower backs are often affected by heavy or repetitive lifting and prolonged awkward postures. Exoskeletal interventions are effective for tasks involving manual lifting and repetitive movements. This study aims to examine the potential of a postural-assist exoskeleton (a passive exoskeleton) for manual material handling tasks.Design/methodology/approachFrom an experimental observation of participants, the effects of postural-assist exoskeleton on tasks and workers were measured. Associated benefits of the exoskeleton were assessed through task performance, range of motion and discomfort.FindingsFindings suggest that the exoskeleton influenced discomfort significantly, however range of motion decreased with lifting tasks. The reduced back flexion and increased hip flexion were also indicatives of the participants' responsiveness to the feedback from the exoskeleton. In addition, task completion time increased by 20%, and participants' back pain did not reduce.Research limitations/implicationsThe work tasks were performed in a controlled laboratory environment and only wearable inertia measurement units (IMUs) were used to assess the risk exposures of the body parts.Practical implicationsThis study opens a practical pathway to human-exoskeleton integration, artificial regeneration or enablement of impaired workforce and a window toward a new order of productivity scaling. Results from this study provide preliminary insights to designers and innovators on the influence of postural assist exoskeleton on construction work. Project stakeholders can be informed of the suitability of the postural assist exoskeletons for manual material handling tasks.Originality/valueLittle has been reported on the benefits and impact of exoskeletons on tasks' physical demands and construction workers' performance. This study adds value to the existing literature, in particular by providing insights into the effectiveness and consequences of the postural-assist exoskeleton for manual material handling tasks.

Keywords: material handling; postural assist; assist exoskeleton; exoskeleton; manual material

Journal Title: Engineering, Construction and Architectural Management
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.