LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Alternative approaches to the prediction of electricity prices

Photo by fresonneveld from unsplash

Purpose This paper aims to present the results of the comparison between different approaches to the prediction of electricity prices. It is well-known that the properties of the data generation… Click to show full abstract

Purpose This paper aims to present the results of the comparison between different approaches to the prediction of electricity prices. It is well-known that the properties of the data generation process may prefer some modeling methods over the others. The data having an origin in social or market processes are characterized by unexpectedly wide realization space resulting in the existence of the long tails in the probabilistic density function. These data may not be easy in time series prediction using standard approaches based on the normal distribution assumptions. The electricity prices on the deregulated market fall into this category. Design/methodology/approach The paper presents alternative approaches, i.e. memory-based prediction and fractal approach compared with established nonlinear method of neural networks. The appropriate interpretation of results is supported with the statistical data analysis and data conditioning. These algorithms have been applied to the problem of the energy price prediction on the deregulated electricity market with data from Polish and Austrian energy stock exchanges. Findings The first outcome of the analysis is that there are several situations in the task of time series prediction, when standard modeling approach based on the assumption that each change is independent of the last following random Gaussian bell pattern may not be a true. In this paper, such a case was considered: price data from energy markets. Electricity prices data are biased by the human nature. It is shown that more relevant for data properties was Cauchy probabilistic distribution. Results have shown that alternative approaches may be used and prediction for both data memory-based approach resulted in the best performance. Research limitations/implications “Personalization” of the model is crucial aspect in the whole methodology. All available knowledge should be used on the forecasted phenomenon and incorporate it into the model. In case of the memory-based modeling, it is a specific design of the history searching routine that uses the understanding of the process features. Importance should shift toward methodology structure design and algorithm customization and then to parameter estimation. Such modeling approach may be more descriptive for the user enabling understanding of the process and further iterative improvement in a continuous striving for perfection. Practical implications Memory-based modeling can be practically applied. These models have large potential that is worth to be exploited. One disadvantage of this modeling approach is large calculation effort connected with a need of constant evaluation of large data sets. It was shown that a graphics processing unit (GPU) approach through parallel calculation on the graphical cards can improve it dramatically. Social implications The modeling of the electricity prices has big impact of the daily operation of the electricity traders and distributors. From one side, appropriate modeling can improve performance mitigating risks associated with the process. Thus, the end users should receive higher quality of services ultimately with lower prices and minimized risk of the energy loss incidents. Originality/value The use of the alternative approaches, such as memory-based reasoning or fractals, is very rare in the field of the electricity price forecasting. Thus, it gives a new impact for further research enabling development of better solutions incorporating all available process knowledge and customized hybrid algorithms.

Keywords: methodology; electricity prices; alternative approaches; electricity; approach; prediction

Journal Title: International Journal of Energy Sector Management
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.