PurposeThe present study aims to experimentally investigate the flexural and buckling performances of novel sandwich panels manufactured with sawdust-based modified mortar core and both polypropylene and reinforced polymer plates as… Click to show full abstract
PurposeThe present study aims to experimentally investigate the flexural and buckling performances of novel sandwich panels manufactured with sawdust-based modified mortar core and both polypropylene and reinforced polymer plates as skins.Design/methodology/approachThe experimental investigation includes two main steps, characterization tests were firstly carried out in order to identify the laws behavior of the constitutive raw materials. The second one investigates 42 sandwich panels tested under three-points bending and buckling according to standard norms.FindingsThe emphasized test results in terms of bearing capacity; buckling strength, ductility, and failure mechanisms confirm that the overall and observed behavior of tested eco-friendly panels was in general satisfactory compared with experimental values reported in the literature. Indeed, the failure modes under bending and buckling conditions were summarized as shear/crimping failure of the sawdust-based mortar core without debonding of the core–skins interface.Originality/valueThe paper provides original information about the development of novel sandwich panels with a bio-based core and polymer skins for construction usage as interior partitioning walls.
               
Click one of the above tabs to view related content.