LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical study on the dynamic characteristics of water-lubricated rubber bearing under asperity contact

Photo by a2eorigins from unsplash

Purpose In this study, the dynamic characteristics of the water-lubricated rubber bearing considering asperity contact are numerically studied, including water-film stiffness and damping coefficients and plastic-elastic contact stiffness coefficient. Design/methodology/approach… Click to show full abstract

Purpose In this study, the dynamic characteristics of the water-lubricated rubber bearing considering asperity contact are numerically studied, including water-film stiffness and damping coefficients and plastic-elastic contact stiffness coefficient. Design/methodology/approach The Kogut-Etsion elastic-plastic contact model is applied to calculate the contact stiffness coefficient at the bearing-bush interface and the perturbed method is used to calculate the stiffness and damping coefficients of water-film. In addition, the rubber deformation is determined by the finite element method (FEM) during the simulation. Parametric studies are conducted to assess the effects of the radial clearance, rubber thickness and elastic modulus on the dynamic characteristic of water-lubricated rubber bearing. Findings Numerical results indicate that stiffness and damping coefficients of water film and the contact stiffness of asperity are increased with the decreasing of the radial clearance and the dynamic coefficients are less sensitive to the rubber thickness compared with the elastic modulus of rubber. Furthermore, due to the existed groove, a sudden change of the water film direct stiffness and damping coefficients is observed when the eccentricity ratio ranges from 0.6 to 1.0. Originality/value It is expected this study can provide more information to establish a dynamic equation of water-lubricated rubber bearings exposed to mixed lubrication conditions.

Keywords: water lubricated; contact; water; lubricated rubber; rubber; rubber bearing

Journal Title: Industrial Lubrication and Tribology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.