LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of an IEC 61850 standard-based process bus implementation of a protection and control scheme for parallelly connected transformers

Photo from wikipedia

Purpose This paper aims to focus on the implementation of the International Electrotechnical Commission (IEC) 61850–9-2 standard based process bus with merging units (MUs) and sampled values (SV) to improve… Click to show full abstract

Purpose This paper aims to focus on the implementation of the International Electrotechnical Commission (IEC) 61850–9-2 standard based process bus with merging units (MUs) and sampled values (SV) to improve the protection and control systems. The digital process interface is important to be included on the process bus level. Design/methodology/approach The IEC 61850–9-2 process bus standard is not extensively used in regard to SV when the IEC 61850 standard is implemented by power utilities. Many protection and control intelligent electronic devices (IEDs) are connected to a substation communication network, routers and switches using fibre-optic linked Ethernet. However, inductive current transformers (CTs) and voltage transformers (VTs) secondary circuits are still hardwired to the IEDs. The paper highlight issues with the copper wires for currents signals and how these issues can be eliminated by using the MUs and the SV protocol. The voltage regulator control IED of each transformer is required to regulate the voltage level of the secondary side bus bar it is connected to. All the regulating IEDs of parallel-connected transformers are required to communicate with each other to share information. They collectively control the bus bar voltage depending on the switching configuration of the parallel transformers. Findings It is shown that process bus information such as the high voltage switchgear status information of primary plant in the yard, can be used to improve the substation protection and control systems. The power transformer protection and voltage regulator control are focused on. Research limitations/implications The deliverables of the research work can be applied in: The Centre for Substation Automation and Energy Management systems of the Department of Electrical Engineering, power utilities and other establishments using power systems and digital substations in the electrical supply industry. The research work on the thesis led to the development of a laboratory test-bench where students can learn and understand the basics of the IEC 61850–9-2 SVs principles. The test-bench components such as the IEDs, real-time digital simulator, standalone MUs and Ethernet equipment can be used for future research applications. The test-bench can be used to demonstrate during course work for students at the University, the basics of digital substations using a process bus network with IEDs, MUs and Ethernet equipment. Practical implications The research work showed where lab equipment is getting outdated and future equipment will be required for research work in IEC 61850–9-2 process bus. Originality/value Power utilities can benefit from implementing the IEC 61850 part 9–2 of the standard and by using MUs and other process interface information in substations. A cost reduction in high voltage equipment, substation installation and commissioning costs and better performance of protection and control system can be achieved.

Keywords: protection; bus; control; process bus; iec 61850

Journal Title: Journal of Engineering, Design and Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.