LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exposures during industrial 3-D printing and post-processing tasks

Photo by goian from unsplash

This paper aims to measure exposures to airborne contaminants during three-dimensional (3-D) printing and post-processing tasks in an industrial workplace.,Contaminant concentrations were assessed using real-time particle number (0.007 to 1… Click to show full abstract

This paper aims to measure exposures to airborne contaminants during three-dimensional (3-D) printing and post-processing tasks in an industrial workplace.,Contaminant concentrations were assessed using real-time particle number (0.007 to 1 µm) and total volatile organic compound (TVOC) monitors and thermal desorption tubes during various tasks at a manufacturing facility using fused deposition modeling (FDMTM) 3-D printers. Personal exposures were measured for two workers using nanoparticle respiratory deposition samplers for metals and passive badges for specific VOCs.,Opening industrial-scale FDMTM 3-D printer doors after printing, removing desktop FDMTM 3-D printer covers during printing, acetone vapor polishing (AVP) and chloroform vapor polishing (CVP) tasks all resulted in transient increases in levels of submicrometer-scale particles and/or organic vapors, a portion of which enter the workers’ breathing zone, resulting in exposure. Personal exposure to quantifiable levels of metals in particles <300 nm were 0.02 mg/m3 for aluminum, chromium, copper, iron and titanium during FDMTM printing. Personal exposures were 0.38 to 6.47 mg/m3 for acetone during AVP and 0.18 mg/m3 for chloroform during CVP.,Characterization of tasks provided insights on factors that influenced contaminant levels, and in turn exposures to various particles, metals < 300 nm and organic vapors. These concentration and exposure factors data are useful for identifying tasks and work processes to consider for implementation of new or improved control technologies to mitigate exposures in manufacturing facilities using FDMTM 3-D printers.

Keywords: fdmtm; processing tasks; post processing; printing post

Journal Title: Rapid Prototyping Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.