LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study on driving waveform design process for multi-nozzle piezoelectric printhead in material-jetting 3D printing

Photo by edhoradic from unsplash

Purpose Material-jetting (MJ) three-dimensional (3D) printing processes are competitive due to their printing resolution and printing speed. Driving waveform design of piezoelectric printhead in MJ would affect droplet formation and… Click to show full abstract

Purpose Material-jetting (MJ) three-dimensional (3D) printing processes are competitive due to their printing resolution and printing speed. Driving waveform design of piezoelectric printhead in MJ would affect droplet formation and performance, but there are very limited studies on it besides patents and know-hows by commercial manufacturers. Therefore, in this research, the waveform design process to efficiently attain suitable parameters for a multi-nozzle piezoelectric printhead was studied. Therefore, this research aims to study the waveform design process to efficiently attain suitable parameters for a multi-nozzle piezoelectric printhead. Design/methodology/approach Ricoh’s Gen4L printhead was adopted. A high-speed camera captured pictures of jetted droplets and droplet velocity was calculated. The waveforms included single-, double- and triple-pulse trapezoidal patterns. The effects of parameters were investigated and the suitable ones were determined based on the avoidance of satellite drops and preference of higher droplet velocity. Findings In a single-pulse waveform, an increase of fill time (Tf) decreased the droplet velocity. The maximum velocity happened at the same pulse width, the sum of fill time and hold time (Tf + Th). In double- and triple-pulse, a voltage difference (Vd) above zero in the holding stage was adopted except the last pulse to avoid satellite drops. Suitable parameters for the selected resin were obtained and the time-saving design process was established. Research limitations/implications Based on the effects of parameters and observed data trends, suggested procedures to determine suitable parameters were proposed with fewer experiments. Practical implications This study has verified the feasibility of suggested design procedures on another resin. The required number of trials was reduced significantly. Originality/value This research investigated the process of driving waveform design for the multi-nozzle piezoelectric printhead. The suggested procedures of finding suitable waveform parameters can reduce experimental trials and will be applicable to other MJ 3D printers when new materials are introduced.

Keywords: waveform; piezoelectric printhead; design process; waveform design; design

Journal Title: Rapid Prototyping Journal
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.