PurposeThe purpose of this paper is to explore the possibility of an enhanced continuous liquid interface production (CLIP) with a porous track-etched membrane as the oxygen-permeable window, which is prepared… Click to show full abstract
PurposeThe purpose of this paper is to explore the possibility of an enhanced continuous liquid interface production (CLIP) with a porous track-etched membrane as the oxygen-permeable window, which is prepared by irradiating polyethylene terephthalate membranes with accelerated heavy ions. Design/methodology/approachExperimental approaches are carried out to characterize printing parameters of resins with different photo-initiator concentrations by a photo-polymerization matrix, to experimentally observe and theoretically fit the oxygen inhibition layer thickness during printing under conditions of pure oxygen and air, respectively, and to demonstrate the enhanced CLIP processes by using pure oxygen and air, respectively. FindingsOwing to the high permeability of track-etched membrane, CLIP process is demonstrated with printing speed up to 800 mm/h in the condition of pure oxygen, which matches well with the theoretically predicted maximum printing speed at difference light expose. Making a trade-off between printing speed and surface quality, maximum printing speed of 470 mm/h is also obtained even using air. As the oxygen inhibition layer created by air is thinner than that by pure oxygen, maximum speed cannot be simply increased by intensifying the light exposure as the case with pure oxygen. Originality/valueCLIP process is capable of building objects continuously instead of the traditional layer-by-layer manner, which enables tens of times improvement in printing speed. This work presents an enhanced CLIP process by first using a porous track-etched membrane to serve as the oxygen permeable window, in which a record printing speed up to 800 mm/h using pure oxygen is demonstrated. Owing to the high permeability of track-etched membrane, continuous process at a speed of 470 mm/h is also achieved even using air instead of pure oxygen, which is of significance for a compact robust high-speed 3D printer.
               
Click one of the above tabs to view related content.