LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect

Photo by rabinam from unsplash

Purpose The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal radiation, chemical reaction, heat… Click to show full abstract

Purpose The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal radiation, chemical reaction, heat generation and Joule heating effect is investigated and analyzed. The Brownian motion and thermophoresis phenomenon are used to model nanoparticles (Buongiorno’s model). Design/methodology/approach The numerical method is applied to solve the governing equations. Obtained results from the effects of different parameters changes on velocity, temperature and concentration profiles are reported as diagrams. Findings As a result, velocity profile has been reduced by increasing the Hartman number (magnetic field parameter) because of the existence of Lorentz force and increasing Eyring–Powell fluid parameter. In addition, the nanoparticle concentration profile has been reduced because of increase in chemical reaction parameter. At the end, the effects of different parameters on skin friction coefficient and local Nusselt number are investigated. Originality/value Eyring–Powell nanofluid and MHD have significant influence on flow profile.

Keywords: powell nanofluid; thermal radiation; eyring powell; joule heating; flow; powell

Journal Title: World Journal of Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.