LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental, analytical and numerical, investigation of peak temperature and cooling rate in butt joint weld of mild steel

Photo from wikipedia

Purpose This paper aims to measure peak temperatures and cooling rates for distinct locations of thermocouples in the butt weld joint of mild steel plates. For experimental measurement of peak… Click to show full abstract

Purpose This paper aims to measure peak temperatures and cooling rates for distinct locations of thermocouples in the butt weld joint of mild steel plates. For experimental measurement of peak temperatures, K-type thermocouples coupled with a data acquisition system were used at predetermined locations. Thereafter, Rosenthal’s analytical models for thin two-dimensional (2D) and thick three-dimensional (3D) plates were adopted to predict peak temperatures for different thermocouple positions. A finite element model (FEM) based on an advanced prescribed temperature approach was adopted to predict time-temperature history for predetermined locations of thermocouples. Design/methodology/approach Comparing experimental and Rosenthal analytical models (2D and 3D) findings show that predicted and measured peak temperatures are in close agreement, while cooling rates predicted by analytical models (2D, 3D) show significant variation from measured values. On the other hand, 3D FEM simulation predicted peak temperatures and cooling rates for different thermocouple positions are close to experimental findings. Findings The inclusion of filler metal during simulation of welding rightly replicates the real welding situation and improves outcomes of the analysis. Originality/value The present study is an original contribution to the field of welding technology.

Keywords: mild steel; temperature; cooling rates; peak; peak temperatures

Journal Title: World Journal of Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.