LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural parameters analysis for tapered steel section with perforation: effect of shear buckling behaviour

Photo by danieledandreti from unsplash

Purpose Due to economic development, tapered members are commonly applied in steel frames, namely, industrial halls, warehouses, exhibition centres, etc. In the design of cantilever steel beam structures in cities… Click to show full abstract

Purpose Due to economic development, tapered members are commonly applied in steel frames, namely, industrial halls, warehouses, exhibition centres, etc. In the design of cantilever steel beam structures in cities building design, tapering is introduced at the web profile to achieve utmost economy and suit the bending moment distributions. The cross-sectional shape of the beam is varied linearly to the moment gradient to achieve the target of higher efficiency with lower cost. Design/methodology/approach The shear deformation pattern and efficiency of the tapered steel section with perforation were investigated using finite element analysis. In addition, I-beam with web opening is studied numerically via LUSAS software for different parameters of tapering ratio, perforation shape and perforation size and perforation layout. Findings The highest contributing parameters for the highest shear buckling capacity and efficiency of the section were due to the small opening size and tapering ratio. Whilst the variation of perforation layout and spacing give a major effect on the shear strength and efficiency of the tapered steel section with perforation. Besides that, the highest efficiency model is found when the section is designed with 0.4 D diamond perforation in Layout 3 under a tapering ratio of 0.3. The critical shear buckling load and efficiency is reduced 14.39% and 13.91%, respectively, when perforations are added onto the tapered steel sections. Originality/value The tapered steel section with perforation has lower critical shear buckling load and efficiency compared to the tapered section without perforation but obtains a higher critical shear buckling load and efficiency compared to the uniform section without perforation.

Keywords: efficiency; perforation; tapered steel; section; shear buckling

Journal Title: World Journal of Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.