LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

QoE-Based Distributed Multichannel Allocation in 5G Heterogeneous Cellular Networks: A Matching-Coalitional Game Solution

We investigate the problem of multichannel allocation for small-cell users (SUs) in 5G heterogeneous cellular networks by taking users’ quality of experience (QoE) into account. In most existing channel allocation… Click to show full abstract

We investigate the problem of multichannel allocation for small-cell users (SUs) in 5G heterogeneous cellular networks by taking users’ quality of experience (QoE) into account. In most existing channel allocation approaches, they are assumed that each user can only transmit on one channel, and the optimization goal is the network throughput without considering users’ QoE demands. Moreover, the individual QoE losses of macro-cell users (MUs), which are caused by the cross-tiered interference, are not considered. In this paper, considering SUs’ QoE demands and the individual QoE losses of MUs, we propose a joint matching-coalitional game theoretical scheme to solve such a QoE-based multichannel allocation problem with individual cross-tiered interference constraint in each channel. Concretely, according to the different interference and competition relationships among users, we divide the complicated problem into two subproblems, i.e., $Q1$ : intra-cell channel allocation for SUs, and $Q2$ : inter-cell channel allocation for small-cell base stations. We formulate the intra-cell channel allocation as a many-to-one selfish matching game and formulate the inter-cell channel allocation subproblem as an altruistical coalitional game separately. Then, the complicated problem can be solved based on the two proposed games iteratively. We propose a joint channel allocation algorithm for the matching-coalitional game theoretical scheme. We prove that the proposed algorithm converges to a stable channel allocation profile. Simulation results show that the proposed algorithm achieves higher global SUs’ satisfaction than the smallest interference channel selection and random allocation.

Keywords: cell; coalitional game; qoe; channel allocation; allocation

Journal Title: IEEE Access
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.