Understanding the actions of other people is a key component of social interaction. This paper used an electroencephalography and functional near infrared spectroscopy (EEG-fNIRS) bimodal system to investigate the temporal-spatial… Click to show full abstract
Understanding the actions of other people is a key component of social interaction. This paper used an electroencephalography and functional near infrared spectroscopy (EEG-fNIRS) bimodal system to investigate the temporal-spatial features of action intention understanding. We measured brain activation while participants observed three actions: 1) grasping a cup for drinking; 2) grasping a cup for moving; and 3) no meaningful intention. Analysis of EEG maximum standardized current density revealed that brain activation transitioned from the left to the right hemisphere. EEG-fNIRS source analysis results revealed that both the mirror neuron system and theory of mind network are involved in action intention understanding, and the extent to which these two systems are engaged appears to be determined by the clarity of the observed intention. These findings indicate that action intention understanding is a complex and dynamic process.
               
Click one of the above tabs to view related content.