LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

State-of-Health Estimation for Lithium-Ion Batteries Based on the Multi-Island Genetic Algorithm and the Gaussian Process Regression

Photo by firmbee from unsplash

Battery State-of-Health (SOH) estimation is of utmost importance for the performance and cost-effectiveness of electric vehicles. Incremental capacity analysis (ICA) has been ubiquitously used for battery SOH estimation. However, challenges… Click to show full abstract

Battery State-of-Health (SOH) estimation is of utmost importance for the performance and cost-effectiveness of electric vehicles. Incremental capacity analysis (ICA) has been ubiquitously used for battery SOH estimation. However, challenges remain with regard to the characteristic parameter selection, estimation viability and feasibility for practical implementation. In this paper, a novel ICA-based method for battery SOH estimation is proposed, with the goals to identify the most effective characteristic parameters of IC curves, optimize the SOH model parameters for better prediction accuracy and enhance its applicability in realistic battery management systems. To this end, the IC curve is first derived and filtered using the wavelet filtering, with the peak value and position extracted as health factors (HFs). Then, the correlations between SOH and HFs are explored through the grey correlation analysis. The SOH model is further established based on the Gaussian process regression (GPR), in which the optimal hyper parameters are calculated through the conjugate gradient method and the multi-island genetic algorithm (MIGA). The effects of different HFs and kernel functions are also analyzed. The effectiveness of the proposed MIGA-GPR SOH model is validated by experimentation.

Keywords: estimation; process regression; soh; state health; health; gaussian process

Journal Title: IEEE Access
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.