LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Convolution Neural Networks for Twitter Sentiment Analysis

Photo by stereophototyp from unsplash

Twitter sentiment analysis technology provides the methods to survey public emotion about the events or products related to them. Most of the current researches are focusing on obtaining sentiment features… Click to show full abstract

Twitter sentiment analysis technology provides the methods to survey public emotion about the events or products related to them. Most of the current researches are focusing on obtaining sentiment features by analyzing lexical and syntactic features. These features are expressed explicitly through sentiment words, emoticons, exclamation marks, and so on. In this paper, we introduce a word embeddings method obtained by unsupervised learning based on large twitter corpora, this method using latent contextual semantic relationships and co-occurrence statistical characteristics between words in tweets. These word embeddings are combined with n-grams features and word sentiment polarity score features to form a sentiment feature set of tweets. The feature set is integrated into a deep convolution neural network for training and predicting sentiment classification labels. We experimentally compare the performance of our model with the baseline model that is a word n-grams model on five Twitter data sets, the results indicate that our model performs better on the accuracy and F1-measure for twitter sentiment classification.

Keywords: convolution neural; sentiment; twitter sentiment; deep convolution; sentiment analysis

Journal Title: IEEE Access
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.