LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

GTrans: Generic Knowledge Graph Embedding via Multi-State Entities and Dynamic Relation Spaces

Photo from wikipedia

Knowledge graph embedding aims to construct a low-dimensional and continuous space, which is able to describe the semantics of high-dimensional and sparse knowledge graphs. Among existing solutions, translation models have… Click to show full abstract

Knowledge graph embedding aims to construct a low-dimensional and continuous space, which is able to describe the semantics of high-dimensional and sparse knowledge graphs. Among existing solutions, translation models have drawn much attention lately, which use a relation vector to translate the head entity vector, the result of which is close to the tail entity vector. Compared with classical embedding methods, translation models achieve the state-of-the-art performance; nonetheless, the rationale and mechanism behind them still aspire after understanding and investigation. In this connection, we quest into the essence of translation models, and present a generic model, namely, GTrans, to entail all the existing translation models. In GTrans, each entity is interpreted by a combination of two states—eigenstate and mimesis. Eigenstate represents the features that an entity intrinsically owns, and mimesis expresses the features that are affected by associated relations. The weighting of the two states can be tuned, and hence, dynamic and static weighting strategies are put forward to best describe entities in the problem domain. Besides, GTrans incorporates a dynamic relation space for each relation, which not only enables the flexibility of our model but also reduces the noise from other relation spaces. In experiments, we evaluate our proposed model with two benchmark tasks—triplets classification and link prediction. Experiment results witness significant and consistent performance gain that is offered by GTrans over existing alternatives.

Keywords: translation models; graph embedding; knowledge; knowledge graph; relation; dynamic relation

Journal Title: IEEE Access
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.