LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Video Super-Resolution via Residual Learning

Photo from wikipedia

Convolutional neural networks have been widely applied in many low level vision tasks. In this paper, we propose a video super-resolution (SR) method named enhanced video SR network with residual… Click to show full abstract

Convolutional neural networks have been widely applied in many low level vision tasks. In this paper, we propose a video super-resolution (SR) method named enhanced video SR network with residual blocks (EVSR). The proposed EVSR fully exploits spatio-temporal information and can implicitly capture motion relations between consecutive frames. Therefore, unlike conventional methods to video SR, EVSR does not require an explicit motion compensation process. In addition, residual learning framework exhibits excellence in convergence rate and performance improvement. Based on this, residual blocks and long skip-connection with dimension adjustment layer are proposed to predict high-frequency details. Extensive experiments validate the superiority of our approach over state-of-the-art algorithms.

Keywords: video; video super; resolution via; super resolution; residual learning

Journal Title: IEEE Access
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.