LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Integrating Feature Selection and Feature Extraction Methods With Deep Learning to Predict Clinical Outcome of Breast Cancer

Photo by hajjidirir from unsplash

In many microarray studies, classifiers have been constructed based on gene signatures to predict clinical outcomes for various cancer sufferers. However, signatures originating from different studies often suffer from poor… Click to show full abstract

In many microarray studies, classifiers have been constructed based on gene signatures to predict clinical outcomes for various cancer sufferers. However, signatures originating from different studies often suffer from poor robustness when used in the classification of data sets independent from which they were generated from. In this paper, we present an unsupervised feature learning framework by integrating a principal component analysis algorithm and autoencoder neural network to identify different characteristics from gene expression profiles. As the foundation for the obtained features, an ensemble classifier based on the AdaBoost algorithm (PCA-AE-Ada) was constructed to predict clinical outcomes in breast cancer. During the experiments, we established an additional classifier with the same classifier learning strategy (PCA-Ada) in order to perform as a baseline to the proposed method, where the only difference is the training inputs. The area under the receiver operating characteristic curve index, Matthews correlation coefficient index, accuracy, and other evaluation parameters of the proposed method were tested on several independent breast cancer data sets and compared with representative gene signature-based algorithms including the baseline method. Experimental results demonstrate that the proposed method using deep learning techniques performs better than others.

Keywords: predict clinical; feature; deep learning; breast cancer; cancer

Journal Title: IEEE Access
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.