LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kernel Solver Design of FPGA-Based Real-Time Simulator for Active Distribution Networks

Photo by jontyson from unsplash

The field-programmable gate array (FPGA)-based real-time simulator takes advantage of many merits of FPGA, such as small time-step, high simulation precision, rich I/O interface resources, and low cost. The sparse… Click to show full abstract

The field-programmable gate array (FPGA)-based real-time simulator takes advantage of many merits of FPGA, such as small time-step, high simulation precision, rich I/O interface resources, and low cost. The sparse linear equations formed by the node conductance matrix need to be solved repeatedly within each time-step, which introduces great challenges to the performance of the real-time simulator. In this paper, a fine-grained solver of the FPGA-based real-time simulator for active distribution networks is designed to meet the computational demand. The framework of the solver, offline process design on PC and online process design on FPGA are proposed in detail. The modified IEEE 33-node system with photovoltaics is simulated on a 4-FPGA-based real-time simulator. Simulation results are compared with PSCAD/EMTDC under the same conditions to validate the solver design.

Keywords: real time; time; time simulator; based real; fpga based

Journal Title: IEEE Access
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.