LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Dynamic Android Malware Detection System With Ensemble Learning

Photo from wikipedia

With the popularity of Android smartphones, malicious applications targeted Android platform have explosively increased. Proposing effective Android malware detection method for preventing the spread of malware has become an emerging… Click to show full abstract

With the popularity of Android smartphones, malicious applications targeted Android platform have explosively increased. Proposing effective Android malware detection method for preventing the spread of malware has become an emerging issue. Various features extracted through static and dynamic analysis in conjunction with machine learning algorithm have been the mainstream in large-scale malware identification. In general, static analysis becomes invalid in detecting applications which adopt sophisticated obfuscation techniques like encryption or dynamic code loading. However, dynamic analysis is suitable to deal with these evasion techniques. In this paper, we propose an effective dynamic analysis framework, called EnDroid, in the aim of implementing highly precise malware detection based on multiple types of dynamic behavior features. These features cover system-level behavior trace and common application-level malicious behaviors like personal information stealing, premium service subscription, and malicious service communication. In addition, EnDroid adopts feature selection algorithm to remove noisy or irrelevant features and extracts critical behavior features. Extracting behavior features through runtime monitor, EnDroid is able to distinguish malicious from benign applications with ensemble learning algorithm. Through experiments, we prove the effectiveness of EnDroid on two datasets. Furthermore, we find Stacking achieves the best classification performance and is promising in Android malware detection.

Keywords: ensemble learning; android malware; malware detection; malware

Journal Title: IEEE Access
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.