LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance Evaluation of Routing Protocols in Electromagnetic Nanonetworks

Photo from wikipedia

Revolutionary advancement in realizing nano-sensors promises unprecedented enhancement of applications in several fields, such as health, industry, agriculture, environment, and sport. The small size of nano-sensors and their THz band… Click to show full abstract

Revolutionary advancement in realizing nano-sensors promises unprecedented enhancement of applications in several fields, such as health, industry, agriculture, environment, and sport. The small size of nano-sensors and their THz band leads to significant constraints in energy, memory, processing, and transmission range. Recent progress and active research in nano-sensing technology have tackled these constraint and led to increasing interest in connecting these nano-sensors in a new network technology, the nano-network. Communication in nano-networks still poses a non-trivial challenge owing to the constraint of processing, storage, energy, and communication range capabilities of nano-nodes. Short communication range in the THz band renders direct communication in nano-networks infeasible most of the time. Hence, multihop communication among nano-nodes is currently regarded as the viable solution for nano-network realization. In this paper, we investigate three routing protocols: controlled flooding, coordinate/routing for nanonetworks, and hierarchical ad hoc on demand distance vector. We evaluate the performance of the three protocols with respect to energy consumption and network delay against transmission range and network density.

Keywords: network; range; communication; routing protocols; performance; nano

Journal Title: IEEE Access
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.