LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Secrecy Rate Optimization for Cooperative Cognitive Radio Networks Aided by a Wireless Energy Harvesting Jammer

Photo by mbrunacr from unsplash

In this paper, a novel wireless energy harvesting cooperative jammer (EH-CJ)-aided transmission scheme, which can enhance the security for cooperative cognitive radio networks (CCRNs), is proposed. The EH-CJ first harvests… Click to show full abstract

In this paper, a novel wireless energy harvesting cooperative jammer (EH-CJ)-aided transmission scheme, which can enhance the security for cooperative cognitive radio networks (CCRNs), is proposed. The EH-CJ first harvests energy from ambient radio frequency (RF) signals transmitted from the primary transmitter (PT). This energy is then used to transmit jamming noise (JN), so that the performance of eavesdroppers’ receptions is degraded, and also to deliver additional power to the secondary energy receiver (ER). In this way, the proposed scheme can enhance the security and extend the lifetime for CCRNs. For this system, we formulate an optimization problem for maximizing the secrecy rate of the secondary system under transmit power constraints at the secondary transmitter as well as the EH-CJ, minimum harvested energy at the secondary ER and information rate at the primary receiver (PR). Since this optimization problem is not convex, we propose a two-stage optimization algorithm based upon the Charnes–Cooper transformation and rank-one relaxation to solve it. Computer simulation results have demonstrated that the proposed EH-CJ-aided scheme achieves better secrecy rate performance, as compared to an isotropic JN scheme as well as compared to an equivalent scheme which does not use the aid of EH-CJ.

Keywords: energy; radio; secrecy rate; wireless energy; optimization

Journal Title: IEEE Access
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.