LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automatic Colon Polyp Detection Using Region Based Deep CNN and Post Learning Approaches

Photo from wikipedia

Automatic image detection of colonic polyps is still an unsolved problem due to the large variation of polyps in terms of shape, texture, size, and color, and the existence of… Click to show full abstract

Automatic image detection of colonic polyps is still an unsolved problem due to the large variation of polyps in terms of shape, texture, size, and color, and the existence of various polyp-like mimics during colonoscopy. In this paper, we apply a recent region-based convolutional neural network (CNN) approach for the automatic detection of polyps in the images and videos obtained from colonoscopy examinations. We use a deep-CNN model (Inception Resnet) as a transfer learning scheme in the detection system. To overcome the polyp detection obstacles and the small number of polyp images, we examine image augmentation strategies for training deep networks. We further propose two efficient post-learning methods, such as automatic false positive learning and offline learning, both of which can be incorporated with the region-based detection system for reliable polyp detection. Using the large size of colonoscopy databases, experimental results demonstrate that the suggested detection systems show better performance than other systems in the literature. Furthermore, we show improved detection performance using the proposed post-learning schemes for colonoscopy videos.

Keywords: detection; post learning; polyp detection; region based; cnn

Journal Title: IEEE Access
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.