LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Disappearing Link Prediction in Scientific Collaboration Networks

Photo from wikipedia

It is a common sense that both the formation and dissolution of links are the fundamental processes of link dynamics in network organization. Previous studies have analyzed the formation of… Click to show full abstract

It is a common sense that both the formation and dissolution of links are the fundamental processes of link dynamics in network organization. Previous studies have analyzed the formation of links with predicting missing links in current networks and new links in the future. However, little attention has been paid to the disappearing link prediction problem. In this paper, we investigate the disappearing link prediction problem. First, we define the disappearing link prediction in scientific collaboration networks. In contrary to the missing link prediction, we use structural similarity indices to estimate the disappearing links through dissimilarity of the node pairs. Then, we propose a novel method called modified preferential attachment (MPA) for predicting disappearing links. MPA is designed based on the preferential attachment considering both links’ weights and the different impacts of the nodes’ neighbor links. Finally, we evaluate the performance of MPA based on three real scientific collaboration networks extracted from Digital Bibliography & Library Project and American Physical Society datasets. Meanwhile, we explore the performance of the classical similarity methods on disappearing link prediction. The experiment results show that MPA achieves better performance than other classical similarity indices, which verifies the effectiveness of MPA.

Keywords: collaboration networks; scientific collaboration; disappearing link; link; link prediction

Journal Title: IEEE Access
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.