LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving Reliability: User Authentication on Smartphones Using Keystroke Biometrics

Photo by elyaspasban from unsplash

Keystroke biometrics is a well-investigated dynamic behavioral methodology that utilizes the unique behavioral patterns of users to verify their identity when tapping keys. However, the performance of keystroke biometrics is… Click to show full abstract

Keystroke biometrics is a well-investigated dynamic behavioral methodology that utilizes the unique behavioral patterns of users to verify their identity when tapping keys. However, the performance of keystroke biometrics is unreliable due to its high error rate and low robustness. In this paper, we propose differential evolution and adversarial noise-based user authentication (DEANUA), which is a verification scheme for enhancing reliability by reducing the error rate and improving robustness. We investigate the current mainstream features and build a more comprehensive feature set that composed of 146 features. Then, we use a differential evolution method to select an optimized feature set. With the support vector regression method on this feature set, we achieve an equal error rate (EER) of 0.12660% and also a 31.25% energy consumption reduction rate. In this paper, the model is trained with the training samples collected from one situation, but the model is used in various situations. Thus, the robustness of the model is inadequate. We constructed the adversarial noise samples to simulate users’ behavioral characteristics in different situational contexts. We use the adversarial noise samples to test the models in a strict experimental environment, which raises the EER by 83.59%, to 10.9299%. Then, we enhance the model with adversarial noise samples to obtain an EER of 8.70932%, which is a reduction of 20.32%.

Keywords: user authentication; keystroke biometrics; adversarial noise; rate; biometrics

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.