LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Hybrid Model Based on TVIW-PSO-GSA Algorithm and Support Vector Machine for Classification Problems

Photo by deninlawley from unsplash

The increasingly serious haze problem in China has brought about a growing public awareness of air quality. Precise air quality index (AQI) forecasts play an important role in both controlling… Click to show full abstract

The increasingly serious haze problem in China has brought about a growing public awareness of air quality. Precise air quality index (AQI) forecasts play an important role in both controlling air pollution and promoting the sustainable development of human society. However, the randomness, non-stationarity, and irregularity of the AQI series make its classifications very difficult. This paper introduces a time-varying inertia weighting (TVIW) strategy based on a combination of gravitation search algorithm (GSA) and particle swarm optimization (PSO) called the TVIW-PSO-GSA. The TVIW-PSO-GSA is utilized to optimize the penalty parameter $C$ and kernel function parameter $\gamma $ of a support vector machine (SVM) to create a hybrid TVIW-PSO-GSA-SVM algorithm. Twenty-three benchmark functions, five UCI datasets, and an AQI hierarchical classification example are tested to find that the convergence speed and performance of the TVI-PSO-GSA exceed those of other algorithms, and the TVIW-PSO-GSA-SVM algorithm also achieves higher classification accuracy and efficiency than the PSO-GSA-SVM, GSA-SVM, GA-SVM, or PSO-SVM, which indicates that the TVIW-PSO-GSA-SVM reliably and accurately classifies AQI and UCI datasets.

Keywords: tviw pso; gsa svm; pso; gsa; pso gsa

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.