LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Image Encryption Scheme Based on Nonuniform Sampling in Block Compressive Sensing

Photo by lensingmyworld from unsplash

This paper devotes to the image compression and encryption problems. We develop a novel hybrid scheme based on block compressive sensing. Concentrate on taking full advantage of the different frequency… Click to show full abstract

This paper devotes to the image compression and encryption problems. We develop a novel hybrid scheme based on block compressive sensing. Concentrate on taking full advantage of the different frequency coefficients sparsity, the nonuniform sampling strategy is adopted to improve the compression efficiency. First, the discrete cosine transform coefficients matrices of blocks are transformed into vectors by zigzag scanning. The different frequency components are extracted in the front, middle, and back of vectors, respectively. Using the measurement matrices with different dimensions, the combination of low- and high-frequency components, together with the medium-frequency coefficients are compressed simultaneously. Second, the recombinational block measurements are re-encrypted by the permutation-diffusion framework. The logistic map is introduced for key stream generation. In order to accomplish a sensitive and effective cryptosystem, the control strategy for secret keys is employed. The simulation results indicate that the proposed scheme forms a high balance between reconstruction performance, storage and computational complexity, and hardware implementation. Moreover, the security analyses demonstrate the satisfactory performance and effectiveness of the proposed cryptosystem. The scheme can work efficiently in the parallel computing environment, especially for the images with medium and large size.

Keywords: nonuniform sampling; scheme; compressive sensing; image; block compressive; scheme based

Journal Title: IEEE Access
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.